分析系统进水的可生化性时,除BOD外还应关注的四个影响因素
生物处理是以废水中所含污染物作为营养源,利用微生物的代谢作用使污染物被降解、废水得以净化。显然,如果废水中的污染物不能被微生物降解,生物处理是无效的。如果废水中的污染物可被微生物降解,则在设计状态下废水可获得良好的处理效果。但是当废水中突然进入有毒物质,超过微生物的忍受限度时,将会对微生物产生抑制或毒害作用,使系统的运行遭到严重破坏。因此对废水成分的分析以及判断废水能否采用生物处理是设计废水生物处理工程的前提。
生物处理是以废水中所含污染物作为营养源,利用微生物的代谢作用使污染物被降解、废水得以净化。显然,如果废水中的污染物不能被微生物降解,生物处理是无效的。如果废水中的污染物可被微生物降解,则在设计状态下废水可获得良好的处理效果。但是当废水中突然进入有毒物质,超过微生物的忍受限度时,将会对微生物产生抑制或毒害作用,使系统的运行遭到严重破坏。因此对废水成分的分析以及判断废水能否采用生物处理是设计废水生物处理工程的前提。
每个污水处理从业人员都清楚,活性污泥法是污水处理的核心工艺。同时,活性污泥法也是一门关于人类组织微生物吃有机物的学问。为了使活性污泥中的微生物达到最佳的吃货状态,人们总结、发明了各种参数、技术、工艺;可以说,生化系统中的一切手段都是为了“吃有机物”这一核心宗旨。
产生原因:进水负荷过高,冲击负荷较大,造成部分污泥分解并附着于气泡上使气泡发粘不易碎,因此水面积存大量气泡。解决办法:减少进水,稍微加大回流污泥量,稳定一段时间后气泡减少,系统逐渐正常。
荷兰Radboud大学和德国马克斯普朗克研究所(马普所,MPI)的微生物学家发现在一氧化氮浓度足以让其他生命体致命的条件下,厌氧氨氧化菌(Anammox)竟然可以仅靠一氧化氮来生长。该联合团队在厌氧氨氧化菌的研究中取得了很多进展,今天我们将带大家看一下他们发表在著名期刊《科学》子刊《Science Advances》上的研究成果。
沿着《IC反应器调试步骤》灰色的轨迹,继续感性的说参数,IC反应器负荷包括三个:容积负荷、污泥负荷、水力负荷。我们用的比较多的是容积负荷,容积负荷对水力负荷又有一定影响。
一、有机酸的转化:有机物水解成有机酸,pH值下降;长脸脂肪酸分解为短链的,酸增多;pH值下降;VFA(挥发性脂肪酸)降解,有机酸变为无机CO2 ,且脱离水相,酸减少,pH值上升。亦可理解为产甲烷的过程表现。
mbr膜组件之化学浸泡清洗;在线反冲洗。
1、沉淀污泥生物处理系统。2、石灰投加技术。3、污泥碳化技术。4、微生物水解干化蛋白提取。5、热水解+厌氧消化
德国汉堡在Koehlbrandhoeft污水处理厂内建设了一个包括厌氧消化、沼气发电、污泥干化、污泥焚烧在内多种工艺组合的能源化综合利用项目,从概念上看是十分先进的,国内已有多篇介绍。本文根据这些文章所提供的数据,结合汉堡公用排水公司(Hamburg Public Sewage Company)在年报等公开出版物中的基础数据,试图对这一十分复杂的项目进行一个量化解读。
总结:
De、Dn、d、ф的各自表示范围!
De-- PPR、PE管、聚丙烯管 外径
Dn-- 聚乙烯(PVC)管、铸铁管、钢塑复合管、镀锌钢管公称直径
d -- 混凝土管公称直径
ф-- 无缝钢管或者有色金属管道应标注“外径×壁厚”